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1 

Introduction 

In recent years, meta-analysis has been widely adopted as a means of informing sound policy decisions. A 
particularly successful application of meta-analysis has been in the evaluation of the effectiveness of new 
medical interventions, particularly the results of new drug trials. The goal of this type of study is to draw 
a general conclusion from the results of many clinical trials of the same drug which often produce very 
different results to determine whether the drug is safe enough and effective enough to be made available 
to the public. Over the past two decades, meta-analysis has become increasingly common in the study of 
programs and policies designed to reduce crime. 

More recently, researchers have begun to combine meta-analyses with cost-beneft analysis. Meta-analysis 
answers the question: does the intervention produce positive outcomes? Cost-beneft analysis moves 
beyond this question to ask whether an effective intervention creates enough of a beneft to justify the cost. 
Thus, the combined meta-analysis and cost-beneft analysis attempt to answer the question: What is the 
most cost-effective way to increase public safety? 

DCPI has developed an empirical model that combines meta-analysis and cost-beneft analysis to help 
answer this question. The DCPI model uses Bayesian methods to test whether the expected outcomes of 
implementing a policy or combination of policies in Washington, D.C., is worth the investment. The DCPI 
model will incorporate both the costs of delivering services in Washington, D.C., and the benefts of those 
services to District citizens. In particular, the DCPI model will incorporate benefts to D.C. citizens from 
reductions in the risk of becoming a victim of crime. 

The goal of this paper is to demonstrate how Bayesian statistics can be used in conjunction with meta 
cost-beneft analysis. To do this, we use data from 86 drug court evaluations previously coded for meta-
analysis (Shaffer 2009). We then follow Drake, Aos and Miller (2009) in the development of estimates of 
the Washington, DC specifc costs, recidivism rates and criminal justice system resource utilization. The 
calculation of the price of crime to victims is drawn from Roman (2009). 

In this paper, we frst describe a brief history of the use of a combined cost-beneft and meta-analytic model. 
We then discuss the advantages of using Bayesian statistics, rather than traditional methods, for applied 
policy research. Next, we apply this method to a practical policy problem: should the District of Columbia 
implement a drug court? We chose drug courts as our beta test of the model because there have been several 
prior meta-analyses of drug courts which allows us to assess the reliability of our effect size estimates. 
We discuss the Bayesian methods used in this analysis and our preliminary fndings. We conclude with a 
discussion of how differences between our results and prior results should be interpreted. 

We note that the goal of this research is to validate the model, in particular to compare effect sizes generated 
here with effect sizes generated by others using the same or similar data. In this model iteration, only 
the prices of treating District of Columbia residents are drawn from DC data. Thus, the fndings in this 
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paper should not be interpreted as an evaluation of the Superior Court Drug Intervention Program (SCDIP). 
Future research will re-populate these models using DC-specifc data which will allow us to estimate 
the optimal size and composition of the current drug court (SCDIP). Ultimately, the model can be used to 
make evidence-based decisions when policymakers are confronted with difficult choices between successful 
programs when the resources to fund those programs are limited. 

1.1. PRIOR RESEARCH 

In 1999, researchers at the Washington State Institute of Public Policy (WSIPP) created what is to our knowl-
edge the frst cost-beneft model that built upon meta analytic data. The goal at WSIPP was straightforward: 
WSIPP sought to take research results about what programs have been shown to prevent crime in other 
places and times, estimate the cost of implementing those programs in Washington State, and estimate the 
net costs and benefts of running those programs in Washington. The WSIPP cost-beneft model is widely 
acclaimed and represents a substantial step toward evidence-based governance. 

The WSIPP model uses frequentist statistical methods to estimate the costs and benefts of innovative 
policies and programs. Frequentist statistics, however, have several notable limitations in this application. 
First, there is a general problem in meta-analysis that if the underlying studies are unreliable, any estimate 
of the aggregated average effect is also unreliable. Second, the frequentist models generally do not account 
for uncertainty in each step of the estimation process, focusing on variation around the meta-analytic effect 
size, but not on the variation around costs and benefts. While researchers using frequentist statistics could 
estimate variation in each stage of estimation, combining that uncertainty across multiple estimates (of 
effect, costs and benefts) is a much more difficult problem for frequentists. 

Before discussing the statistical advantages of a Bayesian model, it is important to point out some practical 
advantages of the approach. Most importantly, these models solve an ages old problem with frequentist 
statistics: frequentist statistics produce output that is extremely difficult for non-statisticians to interpret. 
For instance, frequentist analysis is commonly used to generate measures of central tendency (most often 
the mean) and other summary statistics which are simply convenient measures of distance from the mean 
of a sample. In the case of a normal distribution, a standard deviation, for example, identifes how far from 
the mean you would fnd two-thirds of all possible means of a sample. Two standard deviations from the 
mean include 95 percent of all possible means from a sample. This information is conventionally used to 
determine whether there is a real effect of an intervention. 

For instance, a test of whether a drug court decreases recidivism might compare new arrests among a number 
of drug court clients and compare those outcomes to new arrests in a group of eligible non-participants. 
That test would produce a mean effect, for example a reduction from an average of 5 new arrests to 2 new 
arrests. However, if there was a lot of uncertainty around that estimate, for example, because there were 
a few people with many arrests than other tests would be needed to determine whether the difference 
could plausibly have been caused by chance. A typical analysis would test whether the plausible range of 
the true mean reduction in new arrests includes 0. Frequentist statistics produced in this analysis would 
include the standard deviation described above, and most notably, would produce an estimate of whether 
the probability that new arrests would have dropped from 5 to 2 purely by chance is less than 5 percent. If 
the researcher the probability of such a drop occuring purely by chance, in the absense of a true effect, is less 
than 5 percent, that fnding is commonly labeled as a statistically signifcant effect. The choice of 5 percent 
is based on convention and is completely arbitrary. 

In applied policy analysis, that way of presenting information is extremely cumbersome. It is equivalent 
to forecasting tomorrow’s weather by stating that the mean expected rainfall is 0.40 inches with a standard 
deviation of 0.25 inches and thus there is a non-signifcant chance of rain. A much more intuitive forecast is 
to simply state that there is an 80 percent chance of rain with rainfall between one-quarter and one-half an 
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Figure 1.1: Examples of Cost Data 

inch. In effect, this is precisely the output generated in a typical Bayesian analysis. Consider the following 
example. 

Figure 1.1 describes the results of a simulation estimating the costs of processing typical drug court clients. 
The fgure on the left shows the frequency with which each possible cost was observed in the data, with 
the most frequent observation being about 0 (suggesting the defendant had minimal involvement with the 
court, possibly only a single hearing) and then a large number of normally distributed costs averaging 
close to 13,000. The second fgure presents the probability than any single court will have each level of 
costs. It shows, for example, that one in eight courts will have more than double the typical drug court 
costs. While this difference in non-signifcant, it is critical information to a cost conscious court system 
considering whether to implement a drug court. While frequentist statisticians could produce a similar 
fnding, it is outside that tradition to do so. And, if those data in Figure 1.1 were produced by combining 
several distributions (such as the distribution of residential treatment, outpatient treatment, etc.) it would 
be almost impossible to reproduce Figure 1.1 using frequentist statistics. 

1.2. AN ALTERNATIVE APPROACH 

We are proposing using Bayesian statistics to address these problems. The Bayesian model explicitly 
introduces uncertainty into each step of the process. Rather than generating point estimates in each step 
that are then used as inputs into the next step without accounting for the uncertainty of the point estimate, 
we obtain a distribution for each of the parameters in our model. This is preferable to simply incorporating 
point estimates in subsequent steps. 

In short, we believe that the key beneft of Bayeisan methods is realized in multistage models, where the 
results from one step are fed as input into the next step. In models like these, it is always possible to use 
a single point estimate as teh input into future stages. However, doing so implicitly assumes that this is 
exactly the right value, estimated with no error. This assumption disregards all common knowledge about 
statistics and produces spurious results that do not accurately refect reality. Modern Bayesian methods, 
which permit using a range of plausible values as inputs into future steps, relax this unrealistic assumption 
and thus better describe the true reality. 
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1.3. DRUG COURTS 

Drug Courts typically involve court-supervised treatment for non-violent, drug-involved offenders who 
meet legal eligibility guidelines (Harrell 1999). Typically, offenders are offered a reduction in penalties upon 
successful completion of the program and demonstrating that they are drug free. Participation is almost 
universally voluntary. Once clients are determined to meet the courts criminal justice and clinical eligibility 
criteria, the defendant is given the option of entering the court or continuing their case in a more traditional 
manner. While programs differ in their components, treatment participation is usually mandatory, a 
program of court supervision is imposed, illicit drug and alcohol use is monitored closely with frequent 
drug tests, and a schedule of requirements for program advancement and graduation (or failure) is defned 
upon entry, with a system of graduated sanctions/incentives in place to ensure accountability (Harrell, 
Cavanagh, Roman 1998). 

Defendants targeted for Drug Court are generally non-violent offenders whose current involvement with 
the criminal justice system is due, primarily, to their substance addiction. Defendants eligible for the drug 
court are identifed as soon as possible after arrest and, if accepted, they are offered an immediate referral 
to a multi-phased treatment program entailing multiple weekly (often daily) contacts with the treatment 
provider for counseling, therapy, and education; frequent urinalysis (usually at least weekly); frequent 
status hearings before the drug court judge (bi-weekly or more often at frst); and a rehabilitation program 
entailing vocational, educational, family, medical, and other support services. Unlike traditional treatment 
programs, becoming clean and sober is only the frst step toward drug court graduation. Almost all drug 
courts require participants to obtain a GED, maintain employment, be current in all fnancial obligations 
(which often includes drug court fees) and child support payments, if applicable, and to have a sponsor 
in the community. Many programs also require participants to perform community service hours to make 
restitution to the community they have harmed. 

However, adult drug courts vary enormously in their practices. Despite the general approach shared among 
drug courts, screening and eligibility criteria, program completion requirements, treatment, sanctions, and 
termination criteria vary widely (Government Accountability Office [GAO], 2005). Drug courts handle cases 
before a defendant is sentenced through pre-trial diversion, post-plea (but pre-sentencing) intervention, or 
a combination of pre- and post-plea approaches. Some courts exclude individuals who have prior convic-
tions or are only users of marijuana or alcohol, whereas others consider such users eligible to participate. 
Treatment, sanctions, and drug testing represent key components of drug court programs; however, referral 
to additional services and support (e.g., Alcoholics Anonymous), use of graduated versus case-by-case 
sanctions, and the nature and frequency of drug testing are not consistent across all programs. 

Although most drug courts serve non-violent offenders, participants in different drug courts may display a 
range of demographic and socioeconomic characteristics, criminal histories, and substance abuse profles. 
While a 2005 GAO review found that participants were generally in their early 30s, male, and unemployed 
upon program entry, these characteristics were not uniform across the programs reviewed. For example, 
the average age at program entry ranged from 24 to 36 years, the percentage of respondents who were male 
ranged from 46 percent to 88 percent, and the percent of participants who were employed at program entry 
ranged from 16 percent to 82 percent. Further, among the evaluations included in the GAO (2005) review, 
adult drug court completion rates ranged from 27 to 66 percent. 

The vast majority of adult drug court evaluations have found that drug courts are associated with reduced 
recidivism. From the late 1990s through the mid 2000s, a series of narrative literature reviews agreed that 
most studies show reductions in recidivism (e.g., Belenko 1998, 1999, 2001; GAO 2005; Roman and DeStefano 
2004). More recently, three reviews have emerged that employed formal meta-analytic techniques, enabling 
quantitative generalizations. The frst, conducted by the Washington State Institute for Public Policy, 
considered evaluations of 57 adult drug courts (Aos, Miller, and Drake 2006). The review found that 
the average adult drug court reduces recidivism by 8 percentage points. The analysis determiend that 
although drug courts were, on balance, cost-effective, 7 of the 11 other adult criminal justice programs 

4 



considered were even more cost-effective. The next considered results from 55 sites, including 49 adult and 
six juvenile drug courts (Wilson, Mitchell, and MacKenzie 2006). In 48 of 55 sites, drug court participants 
had lower rearrest or re-conviction rates than their comparison groups and the sites averaged an estimated 
13 percentage point reduction in recidivism. Shaffer (2006) employed comparable meta-analytic techniques 
with an overlapping, but slightly larger group of 61 adult and 21 juvenile drug court evaluations. This 
analysis reported an average recidivism reduction of 10 percentage points for adult drug courts and fve 
points for juvenile drug courts. This analysis added that drug court programs designed to last from 8 to 16 
months were more effective in reducing recidivism than those designed to last for either shorter or longer 
timeframes. 

A third review conducted by the GAO (2005) omitted evaluations whose designs were seriously compro-
mised: for example, by comparing only successful participants (graduates) to the comparison group or 
by making no effort to control for baseline differences between participants and comparison offenders. 
Previous reviewers had all drawn attention to the low scientifc quality of much of the literature, and the 
Schaffer analysis detected a noticeably smaller effect size for studies implemented with a higher quality 
methodology. However, the GAO results continued to be positive. Drug courts signifcantly reduced the 
rearrest rate in 10 of 13 sites, and signifcantly reduced the re-conviction rate in 10 of 12 sites. 

1.4. OVERVIEW OF THE PAPER 

The cost-beneft analyses based on meta-analytic impact estimates discussed here can be usefully divided 
into three conceptual domains: estimated impacts, costs, and benefts. We discuss each in turn. 

We frst focus on the estimated impacts i.e., the programs effects. These are based on meta-analytic results. 
The frst step in any meta-analytic model is to collect the data. We have, to this point, used data collected 
and coded for other meta-analyses. One critical dimension of the coding, particularly salient in social 
science program evaluations, is the quality of the evaluation. Fortunately, all social science meta-analyses 
carefully code this information, making any available meta-data suitable for our purposes. After coding, 
we model measured program effects according to a three-level hierarchical model (Smith, et al., 1995). This 
modeling uses a Bayesian framework with a diffuse prior, estimated using Markov chain Monte Carlo 
methods based on extensions of the hierarchical models presented in Gelman, et al. (2006) and Gelman 
and Hill (2005). The results of the quantitative meta-analytic model are distributions of the effect size. 
These include the estimated mean and variance of program effects, enabling the construction of a predictive 
interval of effectiveness. This concludes the meta-analytic impact estimates. 

We next turn to the costs of program operation. Currently, no strong framework has been developed for the 
consideration of implementation costs in criminal justice programs. For this reason, we focus primarily on 
operating costs. From past cost-beneft analyses of the programs under study, we collect information about 
the resources (e.g., staff time) that went into program operations. That is, instead of collecting estimated 
costs of program participation, we collect the quantities of resources used. We then use extant data sources 
and expert perspectives from the agencies who would be operating the program to obtain DC-specifc prices 
for these resources. In this way, we account for the fact that drug treatment or probation officers might 
be more costly in the District than in places where the program has been implemented before, but our 
estimated costs will draw heavily on past empirical evaluations of the program. Where possible, we collect 
a range of program costs to account for the fact that not all program participants require the same attention 
or involvement. 

Finally, we must estimate the benefts of the program. Benefts can be conceptualized as the product of 
a quantity of resources saved and the price of those resources. Prices are based on budgets of involved 
agencies, which allow us to estimate, for instance, the cost of one year of probation. The prices of crime (the 
costs to society of criminal victimization) are based on jury-award data (Roman, 2009). 
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The quantities of resources saved are more difficult to estimate. The impact analysis provides the estimated 
range of arrests that will be prevented by program participation. Using various data sources from DC 
agencies, we are able to estimate what types of crimes these arrests most likely would have been. We are 
also able to estimate the probability that these arrests would have led to pretrial detention or supervision; 
criminal court trials; conviction; jail, prison, or probation; etc. Thus, from the estimated range of arrests 
prevented, we can extrapolate to the estimated range of the number of each of these costs that would be 
prevented. Our simulation-based Bayesian methods account for uncertain outcomes throughout the process 
and provide a fnal range of the costs avoided to society. These can be combined with the program costs 
to provide fnal estimates (including reasonable ranges and probabilities) of the net benefts of program 
operations. 

1.5. BAYESIAN METHODS 

Bayesian methods follow a different tradition than most statistics, referred to here as frequentist or classical.1 

This section overviews the features of Bayesian statistics which we consider relevant for our purposes, 
and interested readers are referred to Gelman, et al (2006) for a more comprehensive discussion of the 
comparative strengths and weaknesses of frequentist and Bayesian methods. 

Bayesian methods are drawn from a well-accepted law of elementary probability: 

p(y|θ)p(θ) 
p(θ|y) = (1.1)

p(y) 

where p(θ|y) is typically referred to as the posterior probability of θ, a vector of model parameters, condi-
tioned on the data. That is, the output of a Bayesian analysis is a distribution defning the probability of 
each possible value of the parameter θ, given the data that was observed. Since p(y) depends on neither 
the model nor the parameters, it is the same for all parameters and models. Thus, it contributes nothing to 
estimating particular parameters, and only serves to ensure that p(θ|y) integrates to 1, as all probabilities 
must. As such, it is usually referred to as a normalizing constant, and dropped from consideration, since 
any estimated distribution can simply be scaled by some c to ensure that it sums/integrates to 1. Therefore, 
Bayes’ Theorem is typically reduced to: 

p(θ|y) ∝ p(y|θ)p(θ) (1.2) 

In the above equation, p(θ) is the prior distribution of θ and represents the analyst’s prior beliefs about 
the parameters. The controversy over Bayesian methods most often centers on this. It is often argued that 
p(θ) makes the analysis entirely subjective. However, in most models, it is possible to choose some prior 
distribution that does not infuence or has minimal infuence over the fnal results. This is the approach 
taken here, where the prior distribution has little or no impact, negating most of the criticisms of Bayesian 
methods. In fact, if p(θ) ∝ 1, or we have no beliefs that any one value of θ is any more likely than another, 
then p(θ|y) is simply p(y|θ), which is simply the likelihood function. This is an important result. 

Most frequentist analyses are based on the methods of maximum likelihood estimation. This means that 
given the model used, the estimated parameters are those which maximize the likelihood of the observed 
data. Intuitively, this makes sense, as the parameters are selected to maximize the probability that the true, 
observed data would be generated from the model, or maximize the likelihood that what did happen would 
happen. However, with no prior beliefs, the posterior distribution from a Bayesian analysis is identical 
to the liklihood function. Thus, while maximum likelihood methods select the peak of this distribution, 
Bayesian methods provide the full distribution. In this context, frequentist results are a subset of Bayesian 

1The term classical is often used, although Bayesian statistics are typically considered older than ”classical” statistics. 
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results. For this reason, Bayesian methods provide a much more natural way of dealing with complex 
models, where parameter values are contingent on the values of other parameters, and multi-stage models, 
where the output of one estimation is used as the input to another. In frequentist models, it is most often 
assumed that the estimated parameter is the true value of the parameter, ignoring the fact that it is estimated 
with uncertainty. Complex and multi-stage models simply take estimated values as true values. 

Since both complex and multi-stage models use parameters to generate new parameters, it is vital that 
uncertainty in every stage of the process be carried on to the next. This is best done through Bayesian 
analysis. For this reason, we believe that Bayesian methods are the most appropriate and accurate for the 
models used here. Particularly given modern Bayesian methods, especially Markov chain Monte Carlo 
simulation, used in all analyses in this paper, a Bayesian approach provides more fexibility to estimate 
complicated models than any alternative. For example, frequentist analogs to some of the models presented 
later operate as Bayesian models except with additional assumptions that certain parameters are known, 
when these parameters are not known. We believe that these pragmatic concerns drastically outweigh 
any philosophical debate, and make a Bayesian approach most appealing and useful for practical policy 
analysis. 
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2 

Data 

2.1. META-ANALYTIC DATA 

The data come from Shaffer (2009). Shaffer collected meta-analytic data through the traditional means of 
large literature reviews and careful coding of information provided in the published studies. Concerned 
that data aggregated in this way was insufficient to determine how drug courts work and what types are 
most effective, Shaffer constructed a detailed survey about procedures and programmatic elements and 
administered the survey by phone and mail to 86 drug courts. This approach allows a richer understanding 
of variation in drug courts, to provide more meaningful policy analysis than simply answering the question, 
”Do drug courts work?” In this analysis, we use the Shaffer data to estimate the adult drug court effect size. 
We do not exploit the additional information provided through surveys in the analyses conducted here. 

2.2. COST DATA 

To estimate the costs of operation for a drug court in the District of Columbia, we interviewed the Director 
of Treatment for the Federal Pretrial Services Agency, who heads the current drug court in the District 
(SCDIP). We asked a series of questions derived from personal experience in drug courts, past drug court 
research, and familiarity with the DC criminal justice system. We asked about costs (both fnancial and 
non-fnancial resources) of treatment, supervision and case management, sanctions, hearings, and admin-
istration. Throughout the interview, we put as much emphasis as possible on obtaining a reasonable range 
of plausible costs and outcomes, rather than simple point estimates. This was done in order to fully capture 
variation in drug court processing costs, which has been shown to be substantial (Downey and Roman, 
2011). 

Finally in order to estimate the costs associated with business as usual case processing, we use data from the 
Multi-Site Adult Drug Court Evaluation (MADCE), funded by the National Institute of Justice (Rossman, 
2011). That study collected data on drug court participants in 23 jurisdictions, and data on drug court 
eligible arrestees in six jurisdictions. Since we are primarily interested in the new costs associated with 
drug court, we use the MADCE data to estimate the resources that would have been consumed by drug 
court participants had they not received drug court, and subtract those costs to obtain the new, additional 
(marginal) costs specifc to drug court. 
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2.3. BENEFIT DATA 

In this analysis, we only estimate benefts that accrue to the criminal justice system, and to victims of crime. 
While it is relatively easy to observe the costs to the criminal justice system, estimating harms to victims is 
much more complex. Robust estimates of the price of criminal victimization, measured as the costs of crime 
to victims, inform a wide range of policy analysis and are widely applied. However, the most commonly 
cited studies are constrained by limited data and cannot directly estimate prices and thus the studies cannot 
correct for sampling bias and do not report estimated variance in prices. A recent study (Roman, 2009) 
combines individual and aggregate data and analyzes individual-level data from two sources: jury award 
and injury data from the RAND Institute of Civil Justice and crime and injury data from the National 
Incident-Based Reporting System. Propensity score weights were developed to account for heterogeneity 
in jury awards with respect to legal claims. Data from the jury awards are interpolated onto the NIBRS data 
using combinations of all attributes observable in both data sets. From the combined data, estimates are 
developed of the price of crime to victims for thirty-one crime categories, and these prices of crime are used 
in this research. 
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3 

Methods 

3.1. META-ANALYTIC METHODS 

Throughout this report, we denote the estimated effect from the ith study as ei. Specifcally, in all analyses, 
the log odds ratio of recidivism was used. In addition to being approximately normally distributed, the log 
odds ratio has a number of desirable properties for analyzing binary outcomes such as recidivism (Lispey 
and Wilson, 2006). The log odds ratio of recidivism for the treatment (T) and control (C) groups is defned 
as follows 

� �pT/(1 − pT) 
e = Ln . (3.1)

pC/(1 − pC) 

A negative ei indicates that drug court reduced the likelihood of recidivism and a positive ei indicates drug 
court increases the likelihood. The maximum likelihood estimate of the log odds ratio of recidivism for the 
ith study can be simplifed to 

� n+ � 
iTn− 

iC ei = Ln (3.2)
n− n+ 

iT iC 

which, as laid out in Wolpert and Mengerson (2004), has approximate variance 

+ − + −σ2 = 1/n (3.3)i iT + 1/niT + 1/niC + 1/niC 

where n refers to the number of study participants, a superscript of + indicates recidivism, a superscript of 
− indicates non-recidivism. 

3.1.1. Fixed and Random Effects Models 

Meta-analyses take a variety of different forms, however most can be classifed as either fxed or random 
effects. A fxed effects analysis assumes that all studies are measuring the same effect. In this case, the 
maximum likelihood estimate of the mean is 

10 



PI 
i eiσ−2 

i µ = (3.4)PI 
i σ

−2 
i 

and that for the variance is 

IX 
σ2 = 1/ σ−2 . (3.5)i 

i 

This formulation is the familiar aggregate mean, where each study’s estimate is weighted by the inverse of 
its variance. The intuition is that each study’s estimate is estimating the same thing: a single mean impact. 
Some studies provide a very precise estimate of this impact, while others estimate it with less precision. 
Thus, to identify the true mean impact, one should consider all studies, but base estimation more on those 
with more precise estimates. 

The random effects formulation, however, does not assume that all studies are estimating the same true 
mean impact. Rather, it assumes that each study is estimating its own true impact. Those impacts are 
related, but not identical. More formally, it assumes that the true impact estimated by each study is drawn 
from a common population. For each study, there is a measured treatment effect (ei), which is estimated with 
some uncertainty (the squared standard error of the estimate, σ2). Following the convention in the literature i 
(Higgins, Thompson, and Spiegelhalter, 2009; Sutton and Abrams, 2001; Turner, et al, 2009; Welton, et al, 
2009; Wolpert and Mengerson, 2004) we will assume that the squared standard error of the estimate is the 
true variance of the effect, as Welton, et al (2009) has shown that this rarely affects analytic results. Thus, we 
have 

ei ∼ N(θi, σ
2 
i ) (3.6) 

where θi is the true effectiveness of the ith court. The second level of the hierarchical model assumes that 
the ith true treatment effectiveness is from a larger population of treatment effectiveness: 

θi ∼ N(µ, τ2). (3.7) 

The random effects model has a second source of variation. Within each study, there is σ2. This can be 
thought of as the uncertainty of the study’s estimated effect (ei) or as the variance in esmtimated impact 
if one were to replicate the same analysis1. This is captured by σ2 

i . However, there is also variation in 
effectiveness among the various studies, or drug courts under study, captured by τ2. 

Frequentist or classical statistics also have random effects models. The difference between these models and 
their Bayesian analogs is small but important. The frequentist analysis estimates a single value τ2 which 
is carried throughout the remainder of the analysis as though it is the true value. The Bayesian analysis, 
on the other hand, treats both parameters as being uncertain by estimating a full distribution for each. 
The implications of this are three-fold. First, the Bayesian approach allows the analyst to specify a prior 
distribution for each parameter, thus synthesizing the information in the data and any outside source of 
relevant information (Gelman, et al, 2006). Second, by assuming that the estimate of τ2 is the true estimate, 
classical analyses do not generate a range of possible values for τ2. Thus, though the analyst can be certain 
that the estimate of τ2 is the most likely of possible values, there is little information about how far off one 
could potentially be from the true value. 

1Though the frst is a Bayesian way of thinking and the second is fundamentally frequentist, for our purposes, both can be used 
interchangably. 
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Finally, and relatedly, by assuming that the estimated value of τ2 is the true value, a frequentist analysis 
greatly overstate the confdence in the fnal estimate of µ, which is often the primary parameter of interest 
in the model because it represents the overall average effect of the treatment. Sutton and Abrams (2001) 
showed that the variance of the estimate of τ2 (a measure of uncertainty about the estimate) is often quite 
large and that including this uncertainty dramatically reduces the precision of the estimate of µ. Since τ2 is, 
in fact, an unknown quantity, treating it as such and transferring that uncertainty throughout each stage of 
the analysis is an important and realistic step. By assuming that the maximum likelihood estimate of τ2 is 
the true value, a frequentist analysis will artifcially infate confdence in the estimated aggregate impact of 
the program. 

We use Bayesian random effects meta-analyses instead of Bayesian fxed-effects models because they have 
been shown to be most theoretically and practically appropriate in almost all circumstances (Wolpert 
and Mengerson, 2004). They are particularly important in our context for two reasons. First, though 
the mean effect size is relatively unchanged between fxed and random effects analyses, the variance of 
that estimated effect, which represents the uncertainty surrounding the estimate of the mean effect size, is 
signifcantly higher with random effects (Higgins, Thompson, and Spiegelhalter, 2009). Random effects seem 
appropriate given that our motivation for employing Bayesian methods is largely derived from attempts to 
fully represent uncertainty inherent in any predictive meta-analysis and to present policy-makers with the 
most realistic estimate of the full range of effects that can be reasonably expected. 

Further, and more importantly, random effects estimation is most appropriate when the underlying studies 
are estimating different effects because the actual treatment itself is heterogenous, whereas fxed effects 
are appropriate when each study is estimating the same true underlying effect (Sutton and Abrams, 2001). 
Since each study is estimating the effectiveness of a different drug court and drug courts are notoriously 
heterogenous (Zweig, Rossman and Roman, 2010), assuming that each study is estimating the same effect 
(which is to say that each drug court studied in our sample is equally effective), seems highly inappropriate. 
As the saying goes, ”If you’ve seen one drug court, you’ve seen one drug court.” Thus, random effects 
models allow us to determine the aggregate, average effectiveness of drug courts without assuming that 
each drug court is equally effective (as fxed effects would do). 

Finally, it is worth noting that fxed effects models are a special case of random effects models (Wolpert and 
Mengerson, 2004). If τ2 = 0, then there is no between-study variance, so all studies are estimating the same 
true treatment effect. In this case, the random effects model reduces to the fxed effects model. Thus, if 
our analyses refect that much of the probability mass of τ2 is near zero, fxed effects models may be more 
appropriate and are worth investigation. For these reasons, all analyses in this report are conducted using 
random effects models of the form laid out in equations (8) and (9). 

3.1.2. Study Quality 

It would be inappropriate, however, to analyze all studies collectively, because the 86 studies vary substan-
tially in their quality. Thus, even when allowing the measured treatment effect to vary across the different 
studies, it seems inappropriate to allow poorly identifed studies, most suceptible to bias, to have the same 
infuence on the estimate of the aggregate mean as well-designed, well-executed studies. Meta-analysis, 
particularly in social science, has long recognized the importance of this and has adopted a number of 
approaches to address the problem. Examples abound in social science, criminal justice (Aos, et al, 2006), 
and even drug court research (Wilson, Mitchell and Mackenzie, 2006). We adopt many of the methods 
employed by those analysts. 

Before accounting for study quality, we must defne some metric by which to measure it. The primary 
metric employed in criminal justice research is the Maryland Scientifc Methods Scale (SMS) for program 
evaluations. The scale defnes fve levels of scientifc rigor, which are, in order of most to least rigorous 
(Sherman, et al, 1998): 
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1. Random assignment to treatment and control groups. 

2. A comparison between multiple treatment and multiple control groups. 

3. A comparison between the treatment group and a comparable control group. 

4. Either a relationship between outcomes before and after a program, or the comparison of individuals 
in treatment and control groups with no efforts to ensure comparability. 

5. Simple correlation between an outcome and some risk factor at a single point in time. 

Studies which are more rigorous are expected to be less subject to bias and are more likely to reliably estimate 
the true treatment effect of interest. We see strong advantages to the use of the Maryland SMS, and Aos, 
et al (2001) have demonstrated that it is widely applicable to a number of different policy considerations. 
Perhaps its greatest strength is that it is not dependent on the context. Since it is purely methodological, it 
can be applied to any issue, and used for a variety of puposes. 

However, in particular contexts it may not represent the optimal means by which to defne study quality. 
We see two arguments. First, a well-designed study is not always that which is least subject to bias. For 
instance, two of the four random assignment studies of drug courts in our sample of 86 studies include 
very small sample sizes, and one has substantial attrition as well. To further illustrate this point, consider 
a well-designed quasi-experiment where the comparison group was drawn from a sample of eligible drug 
court participants excluded from the program because it had reached capacity. While the frst study has the 
highest value according to the SMS and the latter study is assigned a middle ranking, there is no reason, a 
priori, that it should be assumed that the frst is better simply because of the study design. 

Second, in a particular context, the Maryland Scientifc Methods Scale may overlook valuable information 
which can be used to gauge the quality and reliability of the research. Thus, though generality is its most 
attractive feature, it can also be a drawback. For instance, consider two studies of the effectiveness of drug 
court. Both have a treatment and control group, and both use propensity scores to balance both groups on 
observable characteristics such as age, race, gender, number of prior arrests, and substance dependency. 
Both studies would receive identical scores on the Maryland Scale. However, suppose that one study’s 
comparison group was drawn from those who were rejected from the program by the prosecutor, while the 
other’s was again drawn from indivduals excluded due to capacity restraints. Clearly, the studies are of 
different qualities with different levels of reliability and susceptability to bias. Though the samples may be 
balanced on observable characteristics, unobservable characteristics are often of greatest concern to social 
science researchers. 

With these considerations, we defne our own scale of rigor to be applied specifcally to drug court research 
and specifcally for use in meta-analysis. Our scale, from most rigorous to least rigorous, is as follows: 

1. Random assignment to treatment and control groups. 

2. Studies that successfully match individuals from each group or balance the groups on observable 
characteristics, where the comparison group was eligible drug offenders who were not referred, the 
regular probation or diversion population, or a historical comparison group. 

3. Studies which used multivariate statistical analysis or unsuccessfully attempted matching, where 
the comparison group was made up of eligible drug offenders who were not referred, the regular 
probation or diversion population, or a historical population. 

4. Studies where the comparison population was made up of individuals who declined participation, 
were rejected from the program, had a non-eligible drug offense, or where there was substantial 
(differential) attrition or all of the above, regardless of the study design. 

While the Maryland Scale is discussed in depth elsewhere and is largely adapted from a long scientifc 
literature (see the Cochrane Collaborative for more information), our scale warrants some brief discussion. 
The highest level of rigor, as in the Maryland Scale, random assignment, is based on study design. Beyond 
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that, however, our scale was designed to envelop two different dimensions: composition of the comparison 
group and analytic methods. The next level includes studies where we feel that the comparison group is 
most comparable to the treatment group and least likely to be subject to unobserved bias. 

The second level of our scale requires matching studies. We do not feel that matching studies are better at 
identifying program effects than well-executed studies using multivariate controls. However, the log odds 
ratio, our measure of the effect of the program, does not utilize the information from the statistical controls. 
That is, the log odds ratio is based solely off of the number of indiduals in each group who recidivated. 
Thus, while the studies themselves may account for all confounding factors, our measure of the effect size 
does not. This shortcoming builds bias into the log odds ratio defned for studies which use multivariate 
analysis. However, as long as the comparison group is reasonable, while we are not as confdent in the log 
odds ratio as we are for studies where the groups were carefully matched, we do feel that the bias is limited. 
Thus, we rank these studies the second lowest.2 

Finally, the last group includes studies with poorly selected comparison groups. Those who would not 
be eligible and those who either declined or were rejected would be expected to naturally do worse than 
eligible individuals who were accepted, regardless of the intervention. Thus, the fnal category includes 
studies which have bias built in. 

Throughout the analyses presented in this report, we use both the study quality defned by the Maryland 
Scale (which is far more generally applicable) and that defned above (which is specifc to drug courts and 
meta-analysis) and run each model twice. 

3.1.3. Independent Analyses 

Once we have appropriately labeled poor studies, the natural next step is to estimate the effectiveness of drug 
court while controlling for study quality information. The most basic way of doing so is to meta-analyze 
the highest quality evidence separately. This way, the information derived from weak, potentially biased 
studies has no impact on the information derived from higher quality studies. Random effects analyses 
allow for variability between studies of the same methodological rigor, and results provide estimates of the 
average treatment effect within each study type, the variability between estimates of the same type, and a 
mean effect for each study which is adjusted to draw power from studies of the same rigor.3 

3.1.4. Weighted Analysis 

Independent analyses, however, are not ideal. Applied policy research has little interest in the variation in 
estimated effects across different research designs. The goal of these analyses is to inform policy-makers 
about the true effects of a particular program to inform implementation decisions. Thus, we are only 
interested in the ”true” effects of the program and the heterogeneity of true effects across different drug 
courts. Because random assignment is typically considered the ideal research design, we would most likely 
use the results from the analysis only of randomized studies to estimate the effects (and a predictive interval 
for those effects) of drug court. Within the dataset, there are only four randomized trials4, one of which had 
attrition of nearly 50% and another which had a sample size of less than 80. Neither of these studies seems 
appropriate for determining the true effectiveness of drug court. By restricting our inference to only the 
randomized trials, we ignore 78 studies which potentially contain a wealth of useful information. 

2One potential solution would be to use the estimated coefficient measuring the treatment effect from the multivariate analysis 
instead of the simple number of individauls from each group who recidivated (see Aos, et al, 2006). This method has methodological 
implications too complex to be discussed here. We encourage the interested reader to see Lipsey and Wilson (2006), especially pages 
67-71. 

3This is an important results in Bayesian hierarchical models often referred to as ”shrinkage”. For more, see Gelman, et al (2006) or 
Raudenbush and Byrk (2002). 

4Deschenes, et al (1995); Breckenridge, et al (2000); Dickie (2001); Gottfredson, et al (2003) 
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Thus, an alternative approach is to include all studies in the analysis, but to assign weights such that 
studies with better designs have greater infuence on the results. This approach has been used in a number 
of contexts (Begg and Pilote, 1991; Li and Begg, 1994; Larose and Dey, 1997). Aos, et al, weight studies 
according to the Maryland Scientifc Methods Scale such that studies in the last two categories are excluded 
from the analysis, studies in the third level are weighted by 0.5, those in the fourth are weighted by 0.75, 
and randomized trials (the frst category in the Scale) are not downweighted at all. The intuition behind 
these weights is that studies with worse designs are less likely to reliably identify the true treatment effect. 
The weights reduce their infuence on the overall estimated mean. 

We conduct a random effects meta-analysis of the effectiveness of drug courts using the weighting scheme 
designed by Aos, et al, and the analog based on our categorization (studies in the frst level weighted by 
1, those in the second weighted by 0.75, those in the third weighted by 0.5, and the rest excluded). It is 
important to note that the specifc values of the weights selected are arbitrary (Aos, et al, 2006). Conceptually, 
more rigorous studies are given greater weight, but the selection of 1, 0.75, and 0.5 has little empiricial or 
theoretical foundation. We adopt the same values, with the same limitation. 

3.1.5. Regression Analysis 

Weights, however, are not ideal either, particularly in the presence of bias. Weighting an estimate does not 
change its estimate of the treatment effect. A weight is often misinterpreted as pulling the estimate towards 
zero. This is not correct. Rather, weights simply reduce the infuence that a particular estimate has on the 
aggregate mean estimate. In this way, downweighting an observation has the same effect as increasing its 
variance. Thus, in short, a weighting approach assumes that the mean estimated effect of a subgroup of 
studies does not depend on the quality of those studies (Greenland and O’Rourke, 2001). This is tantamount 
to assuming that poorly designed studies still provide unbiased estimates of the true treatment effect, but 
estimate it less precisely (greater variance). Thus, while weights account for underestimated variance, any 
directional bias in the estimate is unaddressed. 

Regression methods are often used to identify these systematic biases (e.g., Lipsey, 2009). Each study’s 
estimated effect can be regressed on a discrete set of quality variables. This way, coefficients on study 
quality variables pick up any systematic deviation from the omitted category, most naturally random 
assignment.5 This method can be used to detect bias resulting from study design.6 

Sutton and Abrams (2001) showed that a random effects meta-analysis model can easily be extended to 
a meta-regression by including study-level variables at the second level. Thus, as in the typical random 
effects formulation, 

ei ∼ N(θi, σ
2). (3.8)i 

However, now 

XJ 

θi = µ + β jxi j + τzi (3.9) 
j=1 

where µ is still the grand mean and τ still captures between study heterogeneity because 

5It should be noted here that this method, as explicated here, only detects additive bias (e.g., when the effect estimated from a weak 
study is x units higher or lower than the true effect). For multiplicative biases (where the estimated effect is x times larger than the true 
effect), a different formulation is required. 

6Technically, it is not appropriate to assume causality in this relationship. As Wilson (1995) has argued, it is possible that study 
design is correlated with program quality so that weak study designs produce worse estimated effects because they are evaluating 
weaker programs. 
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zi ∼ N(0, 1). (3.10) 

The variable xij is a binary variable indicating whether or not the ith observation falls in the jth quality 
classifcation. Thus, β j captures the systematic bias in studies of type j. 

Because this is still a Bayesian analysis, the results will provide full (posterior) distributions for µ, τ2, and 
the various β j’s. Thus, the β j’s provide a distribution of the potential bias of each study type. If any of 
these β j’s appear to be signifcantly different from zero, the corresponding study type produces estimated 
effects which are persistently different from those derived from random assignment (which we select to be 
the omitted category). Thus, systematic bias is present which is unaccounted for by the weighting strategy 
(Greenland and O’Rourke, 2001). 

Through a Bayesian random effects regression, we can identify whether any types of studies introduce 
persistent bias. We conduct such a regression using study quality defnitions from both the Maryland Scale 
and our own defnitions. If our model fts the data better than the Maryland Scale, then our categories more 
accurately identify sources of heterogenity among estimated drug court impacts. Two Bayesian models can 
be compared through Bayes’ Factors (Kass and Raferty, 1995). 

Bayes’ Factors (sometimes called BFs) are derived directly from Bayes’ Theorem. They are useful for 
comparing the probability of one model being the true model, relative to another specifed model (Gelman, 
et al, 2006). The probability of a model (Mi), given the existing data (D) (also known as the posterior 
probability of the model), can be evaluated directly using Bayes’ Theorem as 

p(D | Mi)p(Mi)p(Mi | D) = . (3.11)
p(D) 

If we wish to compare two models, we can calculate the ratio of their posterior probabilities as 

p(M1 | D) p(D | M1)p(M1) p(D) p(D | M1)p(M1) 
= × = (3.12)

p(M2 | D) p(D) p(D | M2)p(M2) p(D | M2)p(M2) 

where p(D) cancels itself out because the same data is used in both models. The p(Mi)’s allow the researcher 
to specify prior probabilities for the models. That is, the researcher can say, a priori, how much more likely 
one model is than the other. If the researcher considers both models equally likely, then p(M1) reduces to 1 p(M2) 
and the Bayes Factor is simply 

p(D | M1) 
. (3.13)

p(D | M2) 

The functional form of p(D | Mi) is simply that of the likelihood function, in which case the Bayes’ Factor is 
simply a likelihood ratio test. However, the important difference is that in a Bayes’ Factor, the true parameter 
values are assumed unknown, whereas a likelihood ratio test assumes that the estimated values are the true 
values . Thus, to incorporate all uncertainty about parameter values, p(D | Mi) must be integrated over all 
possible values of the parameters in Mi so that Z 

∞ 

p(D | Mi) = p(D | Mi, Φi)p(Φi | Mi) ∂Φi (3.14) 
−∞ 

where Φi is the vector of model parameters in model i and p(Φi | Mi) is the prior density of those parameters 
conditioned on the model (Sutton and Abrams, 2001). We employ Bayes Factors using the estimated 
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posterior distributions as p(Φi | Mi) to compare the random effects regression model ft to the Maryland 
Scale’s defnitions of study qualtiy and that ft to our own categories to determine which classifcation better 
explains the heterogenity in estimated effects, which may be the result of biases inherent in research design. 

3.1.6. Three-Level Hierarchical Model 

However, a random effects regression of the form used here, 

ei ∼ N(θi, σ
2) (3.15)i 

XJ 

θi = µ + xj + τzi (3.16) 
j=1 

has the undesirable property of most regressions: it constrains the variance of each of the k sub-groups to 
be identical. That is, the between-study variance (τ2) does not depend on the type of study. Therefore, 
this method allows the mean of estimated effects to depend on the quality of the study, addressing biases 
resulting from design, but without letting the variance vary across study type. Thus, the model implies 
that studies of all types are equally reliable and consistent in estimating the class-specifc mean. This is 
the opposite problem from the weighting approach, which assumed that study quality led to no bias, but 
simply reduced the consistency and reliability of the estimates. 

An ideal model would allow the mean of the estimated effect to vary depending on study quality, in addition 
to allowing studies of different quality to estimate this effect with different levels of reliability. That is, an 
ideal model would also have a variance term to explain between-study, within-type variance. As illustrated 
in Sutton and Abrams (2001), this can be achieved with a three-level hierarchical model (see Smith, Abrams 
and Jones, 1995; Prevost, Abrams and Jones, 2000). The model is now of the form: 

eij ∼ N(θi j, σ
2 
i ) (3.17) 

where 

θi j = η j + υ j�i (3.18) 

and 

η j = µ + τzj (3.19) 

where z and � are standard normally distributed random variables (with mean 0 and variance 1). Here, 
there is a class specifc mean (η j), which varies from the aggregate mean (µ). Now, instead of representing 
the variance between studies, τ represents the variance between different types of studies’ estimated effect. 
Within each study type, υ j represents the heterogeneity among studies of that type. As in the previous 
analyses, each study has its own true mean effect (θi j), which is assumed to be estimated with known 
variance (σ2) and will be shrunk towards its class-specifc mean (η j), and µ, τ, and υ are assumed to bei 
random variables themselves. 

Thus, the hierarchical model proposed by Sutton and Abrams (2001) allows both the mean and the variance 
of the estimated effectiveness of drug court to vary by study design, incorporating the attractive advantages 
of both the weight-based and regression-based approaches. 
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Several of the parameters in the model are of particular interest for inference. The global mean, µ is of 
obvious potential interest, since it is the average effect across all studies (accounting for the fact that some 
types have different variances and biases). However, µ does not take into account the ordinal nature of 
the quality categories. That is, each quality group’s infuence on µ is a function only of 1) the difference 
between effects estimated from that group and those estimated from other groups and 2) the heterogeneity 
(variance) across studies within that group. Thus, the infuence does not depend on the relative rigor of the 
method or how confdent we are in results generated by those studies. So µ does not know that the quality 
groups are ranked.7 

Thus, another parameter which is of primary interest is the η j corresponding to the mean of the random 
assignment studies. A property of Bayesian hierarchical models is that they ”shrink” the class-specifc 
means to be more like the global mean. Thus, while the η j is still dominated by the information from the 
random assignment studies (which we, again, consider to be the most rigorous designs), it is also infuenced 
by the estimates from other types of studies. The degree of infuence from other studies depends on the 
precision of the random assignment estimates relative to the precision of estimates from other study types. 

Additionally, the υ j’s have important policy implications. These parameters represent the heterogeneity 
among studies of the same type. There are two main sources of heterogeneity among studies within the 
same design group. The frst is artifcial variation due to the design and execution of the studies themselves, 
which is rarely of interest. The second is variation in program effectiveness. This is of obvious interest to 
policymakers considering implementing drug courts, and our use of Bayesian methods was largely driven 
by an ambition to capture and appropriately represent this variation. 

Unfortunately, it is difficult to parse out the former from the later when considering the various υ j’s. One 
approach would be to only consider the random assignment studies’ υ j’s because they would largely be 
driven by cross-court variation rather than variation resulting from the study design. This estimate, however, 
is unlikely to be precise due to the small number of random assignment studies. More generally, the analyst 
could consider any (or all) study design(s) where additional study-resultant variation was unlikely. This 
does not require that the studies provide unbiased estimates of the target impact, but that all studies within 
the same group are biased by (roughly) the same amount8 so that the cross-study variation would still be 
driven by cross-court heterogeneity. Finally, the analyst could consider the υ j’s as a whole. If they are all 
fairly similar, then it is unlikely that the differences in study design play a large role in the size of υ j and it 
is likely that they are measuring true heterogeneity in effectiveness. 

Finally, from a research standpoint, which can be useful in designing future studies to inform policy, it is 
important to consider τ2, which represents the variation across different types of studies. That is, τ2 is a 
measure of the infuence that the study design has on estimated outcomes. If τ2 is very small, study design 
is somewhat less important.9 To consider an extreme example, if τ2 = 0, all studies estimate the same mean 
effect. There is no clustering of estimated effects by study type and a weighting procedure and simple 
random effects model would be sufficient. On the other hand, a large τ2 indicates the opposite: that study 
design leads to substantially different esimated effects. 

The various considerations available in this method highlight its fexibility and practicality. Inference can be 
based on general notions, such as comparing υ j’s or η j’s for study types of varying quality, rather than strict 
defnitions of the relative quality of various methods (as is required for a weighting scheme). Likewise, the 
fexible method models all relevant information, rather than making the draconian assumption that study 
design has no impact on the consistency of the estimated effect (as in the regression-based analysis). This 
technique allows a range of important inferences to be drawn without placing too high of demands on the 
data, which is often questionable in a social science meta-analysis. 

7This can be taken into account with weights, however some arbitrary decision must still be made for weight values. 
8Again, this is assuming an additive bias. 
9The size of τ2 can be considered relative to the size of heterogeneity between studies of the same type (υ j) or differences between 

the mean effectiveness estimated by studies of different types (η j − ηk for j , k). 
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3.2. COST METHODS 

In line with the methods used throughout this analysis (and modern Bayesian methods, more generally), all 
fnal program costs were simulated. That is, for each iteration (N) we simulate a number of individuals who 
participate in the program (n) and for each, we simulated all aspects of the drug court process (such as the 
number of months they would participate, whether or not they would graduate, how much treatment they 
would use, how many sanctions they would incur, etc.) based on the probabilities and confdence intervals 
estimated in the interview. Random simulation is the most efficient and effective way to fully represent 
heterogeneity in process costs. 

For each simulated individual, simulated resource use (such as days in residential treatment) are conditioned 
on simulated values for other individual characteristics to accurately refect the correlation between resource 
use and avoid overestimating variation in process costs. For example, each individual is estimated to 
graduate or not, given a graduation probability of 0.4 (corresponding to the true 40% program graduation 
rate). The length of time an individual who does not graduate stays in the program is estimated according to 
the reported distribution of time spent in the program among those who do not graduate. That individual’s 
drug treatment experience, then, is conditioned on how long he/she is simulated to be in the program. 

Through the interviews, we obtained all necessary unit prices, probabilities, and confdence intervals to 
simulate the program costs. However, some of these costs would have been incurred even without the 
program. Thus, we need to calculate marginal costs of the program by comparing program costs with the 
costs of the alternative. To do so, we relied on MADCE data (Rossman, 2011). For each of n program 
participants, we sampled resource use (supervision officer’s time, drug tests received, drug treatment, etc.) 
from one of the 440 comparison group participants from that study, and assumed that this is the level of 
resources that the individual would have used had he/she not been in the program. These resources were 
valued using the resource prices specifc to DC that were collected from the interview with the Director of 
Treatment. Thus, by subtracting valued resource use from simulated program costs, for each individual we 
can develop an individual level measure of marginal program costs. 

3.3. BENEFITS METHODS 

Because this is a meta-analysis, we can only measure, estimate, and value impacts that were measured and 
estimated in past studies. Thus, we are largely limited to valuing reductions in rearrest as the sole beneft 
of the program, though many authors have suggested that there are likely many other important social 
benefts derived from drug court (WSIPP, 2003).10 Thus, our focus is on the benefts of drug court which 
manifest in terms of reductions in arrest, incarceration, and criminal activity. 

Roman (2009) developed estimates of the victim costs of various crime types and provided a number of 
percentiles for each crime type. We prefer this data to the more commonly used Miller and Cohen (1996) 
estimates. However, those estimates present expected costs and benefts as point estimates with no variation. 
Not every victimization incident is equally costly: some assaults result in little damage, while some result 
in massive and costly injury. Thus, we prefer victims prices that include uncertainty in estimating social 
costs of crime. To incorporate this variation, we used a linear approximation to the full distribution of crime 
costs. 

First, we used the comparison group from the above mentioned multi-site drug court study and obtained 
the empirical distribution of crimes for which they were arrested during the 18 month follow-up period. 
The comparison group’s arrests could be divided into 20 major crime types. Thus, for any given arrest 
averted by the program, we were able to simulate which of those 20 crime types the arrest would have been. 

10Recent fndings suggest that many of the benefts that were expected and hoped for may not actually exist. Impacts such as 
reductions in government support, medical care received, and use of other public services, which many authors suggested likely add 
up to substantial social benefts from drug court, do not appear to come to fruition (Downey and Roman, 2011). 
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We constructed a linear approximation of the distribution of the costs of each type of crime by obtaining the 
10th , 25th , 50th , 75th , and 90th percentiles of each category and then assumed linearity between each of these 
points. Then for each crime, we simulated a uniformly distributed random number along the interval from 
0 to 100. We matched the randomly distributed number with the linear approximation so that, for instance, 
if the random number was 20, we assumed that the cost of that crime were the approximation of the 20th 

percentile of costs. This non-parametric method allows us to sample from all parts of the distribution of 
crime costs without having to specify or estimate the form of the distribution.11 

3.4. FULL COST-BENEFIT METHODS 

To summarize, our approach relied heavily on simulations to capture the true variation in every step of 
the analysis. By simulating, we can estimate the extent of aggregate variation in outcomes. First, we 
developed posterior distributions of the parameters of interest in the meta-analysis. Then, from these 
posterior distributions, which are variable themselves, since neither parameters of the distribution are 
known with certainty, we simulated 2,000 observations of the log odds ratio expected from a new drug 
court. All of the following steps were taken for each of the 2,000 simulations of the log odds ratio so that 
full distributions of all outcome measures could be estimated. 

Assuming a 43% base rate (the mean of comparison group recidivism rates in our sample), we converted 
this log odds ratio into a treatment group recidivism rate. We then specifed how many participants the 
program would serve in a year. Arbitrarily, based on past experiences with drug courts and past research, 
we selected 150 participants. We then simulated how many of those individuals would have been rearrested 
given the comparison group recidivism rate (43%) and given the treatment group recidivism rate (calculated 
from the log odds ratio). The difference between these is the estimated number of arrests prevented by drug 
court. 

For each arrest prevented, we simulated what type of criminal event led to that arrest, given the probabilities 
estimated from arrest records of the comparison group of the MADCE study. However, not every criminal 
incident results in arrest. If each criminal incident is an independent event, and the clearance rate is the 
probability that any particular criminal incident will result in arrest, then the number of criminal incidents 
that will occur before an arrest follows a negative binomial distribution (parameterized by p = the clearance 
rate). Thus, for each crime category in which there was at least one arrest prevented, we simulated a random 
negative binomially distributed random variable to estimate how many crimes lie behind this arrest. We 
also simulated whether an arrest would result in incarceration given the proportion of arrests that resulted in 
an incarceration in the MADCE comparison group. To estimate how long the resultant incarceration would 
last, we used the statistical tables from Durose, Farole, and Rosenmerkle (2009) to calculate the probabilities 
of various sentences for each crime type. Since DC has truth-in-sentencing laws, at least 80% of a sentence 
will be served. For each incarceration prevented, we simulated a uniformly distributed random variable on 
the interval (0.8,1) to simulate what portion of that sentence would have been served. 

Finally, for each crime prevented, we simulated a random number uniformly distributed on the interval 
(1,100), as described in the previous section, to estimate the victimization costs of that crime. The fnal 
program benefts, for each of the 2,000 iterations, are the total costs of victimization avoided, the costs 
of arrests avoided, and the costs of incarceration avoided. These can be compared to the total simulated 
marginal costs of program participation for the 150 simulated participants to determine the net benefts of 
the program. This was done for 2,000 iterations to provide the full distribution of expected net benefts, 
after accounting for variation and uncertainty in each step of the process. 

11Estimating the forms of the distributions of crime costs is non-trivial, since all are highly skewed and abnormal. 
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4 

Results 

4.1. STUDY QUALITY 

4.1.1. Maryland Scale 

The Maryland Scientifc Methods Scale is defned as follows (Sherman, et al, 1998): 

Level 5. Random assignment and analysis of comparable units to program and comparison groups. 

Level 4. Comparison between multiple units with and without the program, controlling for other factors, 
or using comparison units that evidence only minor differences. 

Level 3. A comparison between two or more comparable units of analysis, one with and one without the 
program. 

Level 2. Temporal sequence between the program and the crime or risk outcome clearly observed, or the 
presence of a comparison group without demonstrated comparability to the treatment group. 

Level 1. Correlation between a crime prevention program and a measure of crime or crime risk factors at a 
single point in time. 

The meta-analytic data used in this analysis captured many of these important methodological considera-
tions in three variables denoting research design, composition of the comparison group, and similarity of 
treatment and control groups on key variables (such as demographics and criminal history). From these 
variables, we attempted to classify our 86 studies along the Maryland Scale. 

Level 5. Reserch design was random assignment. (n = 4) 

Level 4. Either statistical matching with no differences between treatment and control group on key variables 
or multivariate analysis. (n = 26) 

Level 3. Statistical matching studies that did have differences between the treatment and control groups. 
(n = 31) 

Level 2. All remaining studies. (n = 25) 
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Table 4.1: Classifcation of Study Quality 
Categories Our Level 5 Our Level 4 Our Level 3 Our Level 2 
MD Level 5 4 0 0 0 
MD Level 4 0 8 5 13 
MD Level 3 0 9 19 3 
MD Level 2 0 0 12 13 

Level 1. The data were restricted to studies which used an explicitly defned treatment and control group, 
so there were no Level 1 studies. 

4.1.2. Our categories 

The following classifcation scheme was created to address the main identifcation concerns specifc to 
drug court research and application in meta-analysis. We refer to Levels 2-5 to maintain rough conceptual 
comparability with the Maryland Scale, although we do not defne a Level 1. 1 

Level 5. Research design was random assignment. (n = 4) 

Level 4. Comparison group was probationers, eligible but not referred offenders, or historical. Research 
design was matching. No differences or minor difference between treatment and comparison group. (n = 
17) 

Level 3. All other studies where comparison group was probationers, eligible but not referred offenders, or 
historical (this includes matching studies with major differences between treatment and comparison group 
and studies that used multivariate analysis). (n = 36) 

Level 2. Any study with a comparison group which we consider very weak (individuals who declined 
participations, were rejected, or had noneligible offenses), an ambiguous comparison group, or those that 
didn’t report the composition of the comparison group. (n = 29) 

4.1.3. Comparing study quality definitions 

Overall, most studies (51%) were in the same categories under both schemes. Table 4.1 displays how often 
the two categorizations matched and differed. 

The largest two categories of different classifcations were those that scored a 2 on the Maryland Scale but 
a 3 on our scale (these are primarily matching studies which reported substantial differences between the 
treatment and control groups, but for which the control group was at least well chosen) and studies that 
Maryland coded as 4 that we coded as 2. All of the multivariate analyses are in this category, which may be 
good studies (unknown) but are bad for our methods of meta-analysis because effect sizes are coded using 
the log odds ratio, which does not depend on the coefficients estimated in the multivariate analysis. 

4.2. META-ANALYTIC RESULTS 

4.2.1. Model 1: Independent Analyses of subgroups 

After acknowledging that different studies are of different qualities, the next natural step is to consider only 
the results from the studies of the highest quality: random assignment. However, with only 4 random 

1This to is to maintain rough comparability, since our studies do not represent Level 1 on the Maryland Scale. 
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assignment studies, the results, unsurprisingly, are of little use. 

Interest in this model centers on two parameters: µ and τ. µ represents the mean effectiveness of drug 
courts, while τ is the heterogenteity in this effect. Thus, τ is the variation around µ. However, in addition 
to capturing cross-court variation around µ, Bayesian methods also capture the variation in the estimate 
of µ itself, by estimating a full distribution for the parameter. Thus, while τ captures the variation around 
µ, the posterior distribution of µ captures the variance in the estimate of µ. As Higgins, et al (2009) put it, 
Bayesian random effects models capture heterogeneity of program effects (τ2) and uncertainty of estimated 
program effects (Var(µ)). 

Figure 4.1 displays the posterior densities estimated for both µ and τ. Both are very wide distributions, 
indicating signifcant uncertainty in the estimates. For instance, the distribution of µ indicates that, given 
a base comparison group recidivism rate of 43%, there is a 95% chance that the mean recidivism rate of 
drug court participants is between 3.5% and 81%. After including the inter-court heterogeneity (τ), the 95% 
predictive interval for any particular court’s recidivism rate goes from 0% to 100%, conveying virtually 
no information. This underscores the primary faw in conducting independent analyses of subgroups of 
studies. 

Figure 4.1: Model 1 Posterior Distributions 

Table 4.2 displays the results from the analyses of all subgroups, as defned by the Maryland Scale and our 
scale. To contextualize the numbers, which are all on the log odds ratio scale, it is helpful to have some frame 
of reference. The mean recidivism rate among control groups in our studies was 43%. Thus, we present 
all numbers as recidivism rates of drug court participants, assuming a base rate of 43% for the comparison 
group. Given this, a log odds ratio of 0 corresponds to a treatment group recidivism rate of 43%. The log 
odds ratios of -0.5, -0.8, and -1.2, correspond to recidivism rates of 31%, 25%, and 18%, respectively, while 
0.5, 0.8, and 1.2 correspond to 55%, 63%, and 71%, respectively. Log odds ratios outside the interval (-2, 2) 
seem implausible in this analysis, as -2 and 2 correspond to treatment group recidivism rates of 10% and 
85%. 

There are several noteworthy observations in Table 4.2. First, the mean and median estimate of µ is below 
zero (indicating drug court reduces recidivism) for every category. The mean of µ tends to be between -0.4 
and -0.6. Assuming a base recidvism rate of 43%, this translates to a treatment group recidivism rate from 
29% to 33%, roughly a 10 to 15 percentage point reduction in recidivism. However, all credibility intervals 
span zero, meaning that there is a substantial probability that the mean drug court effect is an increase in 
recidivism. It is also important to address τ. We remind the reader that individual drug court effects are 
normally distributed around the mean, and thus, 95% of drug courts’ effectiveness is expected to lie between 
µ − 2τ and µ + 2τ. Thus, the large standard deviations indicate that the above analyses include virtually all 
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Table 4.2: Results of Independent Models 
Maryland Classes Our Classes 

Quality 
Level 

Mean Median 
(95% Cr. Int.) 

Mean Median 
(95% Cr. Int.) 

Level 5 µ: -0.365 -0.345 
(-3.03, 1.71) 

τ: 0.735 0.525 
(0.05, 2.92) 

Level 4 µ: -0.551 -0.567 -0.646 -0.621 
(-2.10, 1.06) (-1.96, 0.50) 

τ: 0.707 0.700 0.509 0.500 
(0.48, 1.00) (0.28, 1.85) 

Level 3 µ: -0.558 -0.567 -0.447 -0.453 
(-1.57, 0.53) (-2.36, 1.36) 

τ: 0.376 0.375 0.819 0.800 
(0.18, 0.63) (0.60, 1.10) 

Level 2 µ: -0.342 -0.339 -0.392 -0.391 
(-2.41, 1.68) (-1.30, 0.54) 

τ: 0.947 0.925 0.312 0.300 
(0.60, 1.40) (0.10, 0.60) 

possible outcomes within the range of reasonably expected values. That is, independent analyses provide 
almost no information. 

One further observation from the table is worth mentioning. It is often hypothesized that weak studies are 
less able to identify causal impacts. Unobserved characteristics confate the estimates so that the comparison 
group does not accurately refect what would have happened without the program. Most often, it is argued 
that the treatment group was likely more motivated to succeed than the comparison group, that some 
unknown portion of the observed outcome difference is the result of that motivation, that the estimated 
program impact overstates the true impact, and that the results should be discounted for this reason. 
However, the results in Table 4.2 demonstrate that this may not be the case. The weakest studies (by both 
defnitions) estimated effect sizes that were smaller or comparable to the strongest studies. Higher quality 
non-random studies, regardless of defnition, estimated larger effect sizes than the weakest studies, and 
according to our quality classifcations, Level 4 estimates were even higher than Level 3. Thus, the link 
between weak study designs and magnitude of estimates is not as clear as is often assumed, at least within 
drug court research. 

Figure 4.2 presents the raw data, with no statistical adjustments. On the x-axis is the recidivism rate of the 
control group. On the y-axis is the recidivism rate of the treatmetn group. The diagonal line represents 
where the rates are equal and thus there is neither a decrease nor an increase as a result of the program. 
Thus, studies above the diagonal line saw higher recidivism than studies below the diagonal line. The color 
of each dot corresponds to the quality of the study (according to the Maryland Scale). 

Figure 4.2 confrms the results discussed above presented Table 4.2. The data presents little evidence that 
weaker studies tend to overestimate the effectiveness of drug court. Light blue studies, the weakest appear 
to be more likely than others to fall above the diagonal line. In fact, none of the Level 5 report that drug 
court did not work and only 15% and 10% of the Level 4 and 3 studies did, respectively, while 33% of Level 
2 studies found that drug court did not work. Taken together, these results imply that the weakest studies 
are far more likely to fnd that drug court did not work, rather than the especially large effects weak studies 
are often assumed to produce. 
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Figure 4.2: Raw Recidivism Rates by Study Quality 

4-18 2.jpeg 

4.2.2. Model 2: Weighted Synthesis of Different Study Types 

We next analyzed all studies together, but weighted those of inferior quality to have less infuence over the 
resultant estimates. As discussed in Section 3.1.4, we weight Level 5 studies by 1, Level 4 studies by 0.75, 
Level 3 studies by 0.5, and Level 2 studies are excluded from the analysis (weighted by 0). The results of 
our analysis are displayed here in graphical and tabular form. 

Figure 4.3: Model 2 Posterior Distributions 

The frst important observation is that the precision of the estimates appears to have improved over Table 
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Table 4.3: Results of Weighted Analysis 
Maryland Classes Our Classes 
Mean Median 

(95% Cr. Int.) 
Mean Median 

(95% Cr. Int.) 
µ: -0.512 -0.522 

(-1.80, 0.81) 
-0.536 -0.524 

(-1.99, 0.87) 
τ: 0.542 0.550 

(0.40, 0.70) 
0.635 0.625 

(0.48, 0.83) 

4.2. The credibility intervals are much smaller than those in Table 4.2. On the one hand, this is to be 
expected as more data is used in this analysis than those. On the other hand, since diverse estimates are 
being included together, it is plausible that the credibility interval would have increased. The narrowing 
of the credibility interval may suggest that the estimates themselves are not all that diverse. The credibility 
interval of τ narrowed more than that of µ, indicating that the model is signifcantly better at accurately 
estimating the degree of cross-court heterogeneity. 

We also highlight the consistency of the estimated mean with the subgroup analyses. The mean of the 
estimated mean, which still has considerable uncertainty, indicates that roughly 31% of the treatment group 
can be expected to be re-arrested, a 12 percentage point drop relative to the comparison group. However, 
this is only the mean effect, and the mean value of τ indicates that any particular drug court’s experience 
may reasonably be as high as 60% (µ + 2τ) or as low as 12% (µ − 2τ). In short, these estimates still lack ideal 
precision, though they represent a signifcant improvement over the independent analyses of subgroups. 

Finally, we wish to contrast our categorization with the Maryland scale. The estimates of µ and τ are roughly 
comparable between the two classifcations, however both are more precisely estimated with the Maryland 
Scale. Further, estimated heterogeneity is lower with the Maryland Scale than our drug court specifc scale, 
indicating that many of the heterogeneous studies excluded by the Maryland Scale may have been included 
(in weak study categories) with our scheme. These results seem to suggest that the Maryland Scale may 
more successfully identify weak and potentially biased studies. 

4.2.3. Model 3: Regression Analysis 

In the presence of bias, weighting studies does not adequately adjust for study quality. As discussed, 
weights do not move the location of the estimate to account for bias, only diminish its infuence on the fnal 
results. Thus, we used a random effects regression to test the possibility that different study types have 
different mean estimates.2 Our results are displayed here, graphically and in tabular form. A key advantage 
of this method, which represents its most signifcant gain over the independent analyses of subgroups, is 
that estimates of variance around the mean and of the mean both borrow from other studies. Therefore, 
although each study type has a totally independent mean, the precision of that estimated mean is markedly 
improved over the independent analyses. To highlight this beneft, the frst two fgures below (in the top two 
panels) depict the posterior densities of the mean of each study category, while the second two (the bottom 
two panels) depict the matching densities that were estimated with independent models. Different study 
types’ mean effects can be compared within each fgure; different classifcation schemes can be compared 
horizontally; and the merits of regression analysis relative to separate analyses can be vertically compared. 

The advantages of the regression approach, combining all the data, are clear. The distributions are estimated 
with much greater precision. We note that the plots are on different scales and so the lower two distributions 
in the fgure are more than twice as wide as the upper two distributions. Further, for all subclasses except 
random assignment, the 95% credibility interval for the mean now excludes zero. Though the random 
assignment-specifc mean is estimated with far more precision, it still has a wide credibility interval, 

2It is most helpful to incorporate group estimated coefficients with the grand mean by defning µ j = µ + β j and that is the approach 
taken here. 

26 



Figure 4.4: Model 3 Posterior Distributions 

Table 4.4: Results of Regression Analysis 
Maryland Classes Our Classes 
Mean Median 

(95% Cr. Int.) 
Mean Median 

(95% Cr. Int.) 
µ1: -0.401 -0.408 

(-1.15, 0.36) 
-0.379 -0.382 

(-1.16, 0.39) 
µ2: -0.493 -0.492 

(-0.78, -0.21) 
-0.631 -0.630 

(-0.95, -0.30) 
µ3: -0.523 -0.528 

(-0.79, -0.26) 
-0.473 -0.474 

(-0.72, -0.22) 
µ4: -0.348 -0.348 

(-0.63, -0.06) 
-0.321 -0.321 

(-0.59, -0.04) 
τ: 0.616 0.600 

(0.48, 0.78) 
0.614 0.600 

(0.48, 0.78) 

with substantial probability mass on both sides of zero. Importantly, the studies showing the smallest 
estimated effects are those of the worst quality, confrming that presuming that weak studies automatically 
overestimate impacts appears to be inappropriate. 

Also notable in the table, regardless of the classifcation system used, τ appears to be unchanged, suggesting 
that we may be near the true value. With a mean of 0.6, there is substantial heterogeneity among courts. 
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If we take the true mean to be the rough median of estimated means, -0.5, and the mean of τ, 0.6, to be its 
true value, then a 95% predictive interval for the effectiveness of a randomly selected drug court would be 
(-1.7, 0.7), which assuming a 43% base rate suggests a treatment group recidivism rate between 12% and 
60%. This underscores the importance of presenting a policymaker with accurate information about the 
uncertainty and variation in program impacts, not just the mean program effectiveness with a confdence 
interval indicating plausible values of that mean. The results above suggest that there is more than a 98% 
probability that drug courts, on average, reduce recidivism, but that effect varies signifcantly across courts, 
so that any given court only has an 80% chance of reducing recidivism. Simply presenting the estimate of 
the mean effect overstates the probability of success by a factor of 10. 

4.2.4. Model Selection 

We used Bayes’ Factors to compare model ft for the two defnitions of study quality. For each estimated set 
of parameters, we calculated the probability of the observed data. We then summed this for all estimated 
values of the parameters. This is a numerical approximation of integrating across all model parameters. The 
results indicated that the odds that data were generated according to the Maryland categories as opposed 
to our own are 1.6:1. This suggests that the Maryland classifcation scheme more acurately fts the data, and 
as such, this is the only classifcation scheme used in the fnal anlaysis. 

4.2.5. Model 4: Three-Level Hierarchical Model 

However, across all study types, the above model constrains between-study variation to be equal. This 
assumption seems overly restrictive. Thus, we employ a three-level hierarchical model which allows both 
the mean and heterogeneity to vary across different types of studies. The results, including estimated means 
and variances for each group, are displayed here in graphical and tabular form. 

Figure 4.5: Model 4 Posterior Distributions 

The fnal results are, as discussed in the methods section, rich with information, both of practical signifcance 
for policymakers as well as importance for the research literature. It is natural to start inference with the 
mean effects, and it is noteworthy that each study class has virtually the same mean. The mean estimates 
and 95% credibility intervals overlap signifcantly. Also noteworthy, none of the 95% mean intervals include 
zero, indicating that for any type of study (including the least precisely estimated: random assignment), 
the mean effect of drug court is a reduction in recidivism. Among the groups analyzed, the weakest studies 
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Table 4.5: Results from 3-Level Hierarchical Model 
Quality 
Level 

Mean(η j) Median(η j) 
(95% Cr. Int.) 

Mean(υ j) Median(υ j) 
(95% Cr. Int.) 

Level 5 -0.447 -0.461 
(-0.80, -0.08) 

0.487 0.400 
(0.05, 1.53) 

Level 4 -0.492 -0.490 
(-0.74, -0.27) 

0.694 0.675 
(0.48, 0.98) 

Level 3 -0.510 -0.507 
(-0.68, -0.36) 

0.363 0.350 
(0.18, 0.60) 

Level 2 -0.417 -0.434 
(-0.68, -0.11) 

0.918 0.900 
(0.58, 1.39) 

Overall -0.484 -0.485 
(-0.63, -0.32) 

0.183 0.175 
(0.03, 0.43) 

(Level 2) had the smallest estimated effect sizes, consistent with the fndings throughout the analysis but 
contrary to popular intuition. Finally, we note the precision of the fnal estimate of µ. The 95% credibility 
interval (-0.51, -0.45) is consistent with the estimates throughout the various models and specifcations 
employed, as is its mean of -0.48. 

The fndings suggest that the 95% interval for the mean treatment recidivism rate is 29-35%, indicating that 
the average drug court effect is a 8-14 percentage point reduction in recidivism (consistent with fndings 
from other drug court meta-analyses). 

However, there is considerable variation around that mean effect. Presenting such a simplifed estimate 
to policymakers would lead them to be overly confdent in the expected outcome of implementing a drug 
court. In this model, variance around the mean is captured in two separate terms (each which is estimated 
with uncertainty): τ represents variation across different study types and the υ j’s capture variation across 
studies of the same type. It is immediately evident that variation within study type differs signifcantly 
across different types. The Level 3 studies appear to be the most consistent, while the Level 2 studies (the 
weakest) are the most variable. In other words, not all weak studies are created alike. Generally, though, 
across all study types, it appears that most of the variation between studies is variation within-type (υ j) 
rather than variation across type (τ). In fact, τ is surprisingly small, with a mean only 40% of the mean of υ5 
(the random assignments), 25% the mean of υ4, 50% the mean of υ3, and only 20% the mean of υ2. It appears 
that most study quality impacts manifest themselves as decreasing the reliability of estimates, rather than 
introducing systematic bias, supporting the weighting approach demonstrated earlier. 

4.2.6. Selecting the Final Meta-Results 

Finally, we must select which model, and which estimates from that model, to carry forward through the 
full cost beneft analysis.3 As discussed in the methods section, we prefer Model 4 because it captures 
many of the features we believe to be present in drug court research. However, we are simply interested 
in understanding the true effects of drug court, and Model 4 provides 5 estimated means and 4 possible 
estimates of the between court variation around these means. 

We choose to use the estimated distribution of µ as the distribution of the true mean drug court effect. 
Although µ is infuenced by all study types (including the weakest), because the means of each study type 
are so similar, we do not feel that this introduces bias. Using η5, the mean of random assignment studies, 
would be an obvious alternative, since they are the least likely to be subject to bias, however, because there 

3Technically, we are not required to select a single model. The Bayesian literature includes well-developed methods of ”model 
averaging,” where multiple distinct models are combined, weighted by the relative probability that each model represents the true 
data generating process (Hoetling, et al, 1999; Raferty and Zheng, 2003). Though we acknowledge the usefulness of these techniques, 
we do not employ them here. 
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are so few random assignment studies, η5 is estimated imprecisely. The next natural choice, then, is η4, the 
mean of the next highest quality studies. This would also be a strong choice. We choose to use µ instead 
because it has a (slightly) smaller mean estimated effect. Thus, we make the more conservative assumption 
here. 

We must also choose some parameter to represent variation between courts, given that not all courts lead 
to the mean effect. We choose to use υ3. The argument for doing so builds off that made in the methods 
section. Each υ is made up of two components: variation due to true court outcomes and practices, and 
variation due to research design and execution. From a policy perspective we are only interested in the 
former, but the two components are indistinguishable from one another. However, we argue that the effects 
of research design is a strictly positive component. That is, research design will never lower the variation 
in estimated outcomes below the variation in court performance, it will only increase it. Thus, if we believe 
that research design is independent of true court performance,4 then courts within each subgroup have 
equal variation in performance. We can most closely estimate variation in true performance by taking the 
minimum observed between-study variance (again, assuming that research design can only increase not 
decrease between study variance). Thus, we use υ3 to measure heterogeneity in court impacts. 

4.3. COST RESULTS 

Drug court operations are expensive. The mean marginal costs of drug court participation were $ 10,190 
per participant.5 Consistent with expectations and past research (Downey and Roman, 2011), this mean 
conceals signifcant volatility. To demonstrate this heterogeneity, we simulated 5,000 program participants, 
enough to roughly demonstrate the asymptotic properties of the distribution. The 95% interval of participant 
costs is ($ 116, $ 26,456), with a mean cost of $ 11,853 per participant. The following two fgures display 
this heterogeneity in different ways. The frst is a simple histogram, while the second is the plot of the 
inverse cumulative distribution function. For any particular value along the x-axis, the y-axis displays the 
probability that a participant’s costs will exceed this value. 

The histogram clearly shows clustering around zero. This is because the interview indicated that 20% 
of those who fail are totally non-compliant. They attend no hearings and no treatment, and fail from 
the program within one month. Clearly, these individuals incur virtually no cost. The remainder of the 
distribution appears to be roughly normally distributed, although the positive tail is rather large. This 
is likely due to rare but expensive long-term residential treatment. Roughly 40% of participants receive 
residential treatment, which can last up to 60 days and cost anywhere between $ 2,000 and $ 4,000 per 
month. The second plot demonstrates that the probability of very costly individuals is non-trivial. Nearly 
one in eight participants is expected to exceed double the mean program costs. 

However, displayed in Figure 4.6 are total program costs, not marginal program costs. Some of the resources 
used by participants would have been used even in the absence of the program. However, estimated 
comparison group costs tend to be quite low. The mean cost of a comparison individual is only $ 1,720, with 
a 95% interval of ($ 0, $ 8,723). The histograms in Figure 4.7 display the distribution of comparison group 
costs and the marginal costs of program participation among the 5,000 participants simulated. 

Unsurprisingly, the costs among non-participants also tend to cluster at zero, and so the marginal program 
costs exhibit the same property. There is also a non-trivial chance that drug court participation will be less 

4We reiterate the concern of Wilson that this is not the case. 
5Harrell, Cavanaugh, and Roman (1998) did a rigorous random assignment cost-beneft analysis of the Superior Court Drug 

Initiative Program. Earlier versions of this analysis used the estimates presented there for estimated program costs, after adjusting for 
infation. We chose to replace these estimates by conducting interviews for two reasons: 1) those estimates were based on processing 
and costs from 1995, and 2) because they were top down estimates, there was no way to construct confdence intervals from those 
data, so heterogeneity among indivduals’ costs was unaccounted for. However, estimates based on interviews with the Director 
of Treatment at SCDIP provided mean participant costs that were within several hundred dollars (per participant) of the infation 
adjusted costs from Harrell, et al, (1998). 
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Figure 4.6: Properties of the Distribution of Processing Costs 

Figure 4.7: Comparison Costs and Marginal Costs 

expensive than the alternative.6 In fact, for 10% of the simulated sample, drug court participation is the less 
costly option. The fnal mean marginal costs of drug court participation are $ 10,133, with a 95 % interval 
of (-$ 3,511, $ 25,429). Clearly these results indicate that drug court participation tends to be expensive. To 
decompose these costs, Table 4.6 displays resources used by the participants and the expected resources 
used were they not participating in drug court. 

Table 4.6 validates the cost estimates displayed in the fgures above. All levels of resource usage are 
reasonable. Furthermore, it is interesting to note that for virtually all categories, the upper bound of the 95% 
credibility interval is higher for the comparison group than the treatment group, although the treatment 
group mean is considerably higher. This suggests that a subset of offenders are highly involved, have 
substantial needs, and are very costly. These individuals would incur high costs regardless of the program 
and program involvement might actually lower their costs. Most additional costs of drug court are from 
typical offenders, who would otherwise use little or none of the resources which are often prescribed by 
drug court. This fnding, though driven by simulated data, has important theoretical implications for 

6This could happen, for instance, if regular hearings and less severe drug treatment were able to deter the need for more serious 
treatment such as residential treatment. 
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Table 4.6: Resource Use Among Program Participants and Comparison Group 
Treatment Comparison 

Resource 
Used 

Mean Median 
(95% Cr. Int.) 

Mean Median 
(95% Cr. Int.) 

Outpatient Treatment 
(in hours) 

120 111 
(0, 312) 

18 0 
(0, 115) 

Residential Treatment 
(in days) 

16 0 
(0, 58) 

8 0 
(0, 60) 

Supervision Officer’s Time 
(in hours) 

8.4 8.6 
(0, 17) 

6.4 3.5 
(0, 34) 

Hearings 
(count) 

8 9 
(0, 14) 

2 0 
(0, 17) 

Drug Tests 
(count) 

31 30 
(1, 65) 

15 5 
(0, 85) 

Administrative Costs 
(in dollars) 

850 881 
(33, 1617) 

cost-beneft analyses of drug court: most of the costs are incurred in dealing with typical offenders. Given 
that other research indicates that most of the benefts accrue from dealing with high risk offenders, rather 
than the typical ones, these fndings bolster the suggestion that drug courts are best for high level, high risk 
offenders (Marlowe et al, 2003). 

4.4. BENEFIT RESULTS 

The meta-analytic results indicate that drug courts almost certainly reduce crime. The estimated mean is 
considerably below zero, and there is an 87% chance that any randomly selected court reduces recidivism. 
Assuming a base rearrest rate of 43% and 150 participiants, the Figure 4.8 shows the expected number of 
arrests prevented. At times, this number can be quite large. There is a 55% chance that more than 15 arrests 
will be prevented (or 1 per 10 participants) and a 17% chance that more than 30 will be prevented (1 per 
5 participants). The 95% predictive interval is (-15,43). Thus, the fnal results indicate that there is little 
doubt that the average drug court effect is a reduction in recidivism, but that reduction tends not to be 
overwhelmingly large, and that there is no guarantee that any particular drug court is effective (although 
they are on average). 

However, most of the crimes prevented are insignifcant in nature. Collectively, theft, drug offenses, 
tresspassing, and traffic offenses make up over 60% of the comparison group’s arrests. These crimes are 
nearly costless to society, and so in terms of benefts of reduced victimization, preventing these crimes 
contributes little. In fact, this is typical of the crimes that the comparison group committed. Of the 20 
considered crimes,7 only three had median costs above $ 1,000. Table 4.7 displays the distribution of crimes 
committed, and the distribution of their costs. 

Table 4.7 shows that a given arrest has only a 9.1% chance of being one of these costly crime types. 
Unsurprisingly, though a signifcant number of arrests are averted by drug court, the benefts of those 
averted arrests are quite small. Though there is an 85% chance that the benefts will be positive (resulting 
from reduced arrests), there is only a 67% chance that they will exceed $ 1,000 per participant, and only 
a 28% chance that they will exceed $ 5,000 per participant. Figure 4.8 displays histograms representing 
the most important impacts of the program on the city’s criminal justice system: how many arrests are 
prevented and how many total years of incarceration are saved. 

7If no individual in the MADCE comparison group was arrested for a particular crime, that crime type was not considered in this 
analysis (that is, its probability was considered zero). 
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Table 4.7: Distribution of Crime Types 

Crime 
Type 

Probability Arrest 
Cost 10th 

Costs of Crime (percentiles) 
25th 50th 75th 90th 

Assault 0.073 $ 354 $ 611 $ 13,285 $ 66,644 $ 155,270 $ 334,515 
Gambling 0.011 20 0 0 0 0 0 
Prostitution 0.016 20 0 0 0 0 0 
Weapons 0.011 20 0 0 0 0 0 
Disorderly Conduct 0.014 57 162 162 162 162 162 
DUI 0.048 54 0 0 170 1,700 7,700 
Family 0.002 57 0 0 0 0 0 
Trespassing 0.11 57 0 0 0 0 0 
Robbery 0.011 1,003 18,908 68,326 88,915 334,515 605,225 
Burglary 0.069 747 12 222 782 2,210 5,279 
Theft 0.155 264 192 192 192 192 192 
Motor Vehicle Theft 0.007 756 41 2,550 6,800 17,000 39,100 
Forgery 0.011 264 0 0 34 459 1,870 
Fraud 0.021 264 0 2 170 1,771 7,990 
Stolen Property 0.037 20 0 0 0 0 0 
Damage to Property 0.002 57 0 0 0 0 0 
Bad Checks 0.002 264 0 0 34 459 1,870 
Drug/Narcotics 0.231 25 0 0 0 0 0 
Traffic Offenses 0.126 57 0 0 0 0 0 
Other Offenses 0.043 0 0 0 0 0 0 

Figure 4.8: Histograms of Primary Criminal Justice Impacts 

4.5. FULL RESULTS 

To determine the fnal results, we must calculate the net benefts of program participation. For each iteration, 
we calculate the total marginal costs of program participation across all 150 simulated participants. We then 
calculate the total program benefts across all arrests, crimes, and incarcerations averted. We simply 
difference the two to obtain the net benefts of drug court participation. We divide by 150 to present 
net benefts per participant. Figure 4.9 displays the density of net benefts and the inverse cumulative 
distribution function, which represents, for any level of net benefts on the x-axis, the probability that the 
experienced net benefts will exceed that. 
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Figure 4.9: Distribution of Net Benefts 

The results indicate that drug court benefts rarely exceed costs. Only 14% of the time are net benefts 
positive. When they are positive, however, they have the potential to be quite large. The 99th percentile of 
net benefts is nearly $ 23,000 per participant. The costs of drug court, per participant, however, can also be 
quite large. Though they are never expected to exceed -$ 15,000, there is a 25% chance that net costs per 
participant will be greater than $ 10,000 per participant. As discussed in the benefts section, these bleak 
results are largely driven by the relatively benign nature of the crimes that most drug involved offenders 
mostly commit. The kinds of violent crime that carry large social costs are rarely averted because they rarely 
occur in the frst place. 

It is critical here to highlight a key limitation of this study. The impacts of drug court are based on evaluations 
of various drug courts around the country. The benefts of drug court are largely based on the MADCE, the 
largest evaluation of drug courts ever conducted. The costs of drug court are largely, but only partly, based 
on the Superior Court Drug Intervention Program (SCDIP). Thus, the benefts and costs of drug court do 
not use the same court. If the effects of SCDIP are greater than the average drug court, these methods will 
present an unfair view of drug court. As such, it is not a responsible use of this research to conclude that 
SCDIP is not cost-effective. We see good reason, though we cannot defnitively prove it, that SCDIP is more 
effective than the average drug court. As such, it is possible that this research matches cost estimates of a 
particularly effective drug court to benefts of only average drug courts. We see considerable value to the 
analyses conducted here, but emphasize that they are not a substitute for an evaluation of SCDIP. They 
simply illustrate that most drug courts implemented in DC would not be cost-effective. We reiterate that 
these results do suggest that there is a considerable possibility that a drug court implemented in DC could 
be very cost-effective. 
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5 

Conclusions 

5.1. METHODOLOGICAL IMPLICATIONS 

We have attempted to demonstrate the advantages, in terms of fexibility, thoroughness, communicability, 
and accuracy, of Bayesian methods and inference which considers variability around the mean as much 
as it does the true mean effect. We believe these analyses demonstrate the importance of presenting this 
information for responsible decision making. We argued that the mean drug court effect is certainly a 
reduction in arrests and that there is a 99% chance that this mean reduction is greater than 7 percentage 
points. However, there is a 29% chance that any new drug court will not experience a reduction as large as 
7 percentage points, and an 17% chance that a new drug court will not reduce the rearrest rate at all. 

We have also attempted to highlight the implicit assumptions of some of the most commonly used methods 
for adjusting for differences in study quality. Namely, weight-based modeling assumes that weaker studies 
are less reliable, but does not take into account any systematic direction of bias. On the other hand, 
regression-based modeling assumes that study quality affects the mean estimate, but not the reliability or 
consistency with which that mean is estimated. We have demonstrated that three level hierarchical models, 
as advocated by Smith, Abrams, and Jones (1995) have the attractive feature of relaxing both assumptions of 
constant mean and constant variance, and shown that such models can still produce estimates with equal, 
or near-equal, means for all subgroups if the data are best described that way. 

Throughout, we have used two different defnitions of study quality, each with its own advantages and 
disadvantages. The results show that the more general classifcation scheme better fts the data, but we 
hope to have highlighted that there are alternatives and initiatied an important discussion about how best 
to operationalize study quality. Little work has been done in this area, despite acknowledgement of its 
importance from virtually every meta-analyst. 

5.2. POLICY IMPLICATIONS 

We have attempted to answer several questions with this analysis. 

5.2.1. Do drug courts work? 

Yes. It is virtually certain that the average drug court effect is a reduction in recidivism. This fnding holds 
for studies of all levels of rigor. 
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5.2.2. How consistently do drug courts work? 

There is considerable variation in drug court effectiveness. Overall, there is an 87% chance that a new drug 
court will effectively reduce recidivism. 

5.2.3. How well do drug courts work? 

Drug courts at the top 5% can be expected to reduce recidivism by 23 percentage points, while the weakest 
5% see an increase in recidivism up to 3 percentage points. In aggregate, the number of arrests averted is 
typically not large. 95% of drug courts with 150 people will prevent less than 39 arrests. 

5.2.4. What types of arrests are prevented? 

Most of the time, arrests of drug offenders are for relatively minor offenses. The most common offenses are 
drug offenses, thefts, traffic offenses, and trespassing. Together, these offenses make up nearly 2/3 of crimes 
averted. It is worth noting that none of these offenses is particularly costly to victims. As a result, the social 
benefts of prevented crime tend to be small. 

5.2.5. What are the costs of drug court? 

The average drug court participant costs roughly $ 10,000 more than he/she would without the program. 
This masks signifcant variability across participants, which often carry virtually no costs, but could cost up 
to $ 30,000. 

5.2.6. Do the benefits of drug court outweight its costs? 

This research suggests probably not. On average, drug court will cost $ 5,000 more per participant than is 
yielded in benefts, and there is only an 14% chance that benefts will exceed costs. That said, the benefts 
are potentially large. There is a 1% chance that the benefts could be as high as $ 23,000 per participant, 
which across 150 participants is an aggregate social gain of $ 3.4 million. 

5.2.7. What does this imply about DC’s Superior Court Drug Intervention Program? 

Nothing. The Superior Court Drug Intervention Program (SCDIP) was cooperative in helping the research 
team conduct the project. However, this is NOT an evaluation of SCDIP. The costs of drug court operations 
were based on SCDIP, but the costs of business as usual (which forms the marginal costs of drug court) were 
not. Likewise, the impact of drug courts presented here is not based on SCDIP. The information here does 
not say that SCDIP is a more expensive than normal drug court. Even if it did, it is entirely possible that 
SCDIP is a more successful than normal drug court, justifying the additional costs. The results presented 
here say nothing about SCDIP operations or effectiveness and cannot responsibly be interpreted as such. 

5.2.8. Final Recommendations 

This study is not designed to determine whether the District of Columbia should continue or expand drug 
courts, since critical DC data–including patterns of criminal offending for those eligible for a DC drug 
court are not included in this version of the model. Rather, we have attempted describe what type of 
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information we will have available for policymakers, including the expected impact of drug court on arrests 
and the variability in expected outcomes. We also will present the expected costs of court processing and 
the estimated social benefts of the averted crime. This does not represent the sum total of information 
that policymakers should consider. For instance, concerns about fair treatment of an often disadvantaged 
population, pressures on overcrowding of the corrections system, and broader social impacts of heightened 
incarceration of drug involved offenders are all important considerations which cannot be incorporated in 
a cost-beneft analysis. 

Further, this analysis is limited to only estimating program effects on rearrest rates in the near term following 
program enrollment. Because a meta-analysis can only estimate impacts which have been estimated by 
existing studies, impacts such as employment, social service reliance, and medical system use, to name a 
few of the potential impacts of drug court, cannot be considered here. Additionally, the long term benefts 
of drug court cannot be estimated, because all studies included relatively short follow-up periods (typically 
a few years or less), though theory and intuition suggest that reducing substance dependence among a 
disadvantaged population could have large long-term effects. 

Finally, this analysis estimated the impacts of implementing a generic drug court to deal with a generic 
drug court population. It provided no information on what types of offenders should be targeted, nor 
which policies can make drug courts most effective. Past research has shown that drug courts have different 
effects on different types of people. More information about for whom drug court can work best and 
the characteristics of the population in question should be considered before implementation decisions 
are made, and this model has the fexibility to incorporate that information. Programs targeted at the 
populations for which they are most effective can improve the chances of receiving the high social benefts 
demonstrated here to be possible. Likewise, we found that there are considerable differences between drug 
courts. Further research on what types of courts are most effective can help reform drug courts to be more 
effective, as this research has demonstrated that there is capacity for effectiveness. 
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